
AIAA-2003-1119

Implicit Approaches for Moving Boundaries
in a 3-D Cartesian Method

Scott M. Murman*

ELORET

Moffett Field, CA 94035

smurman_nas.nasa.gov

Michael J. Aftosmis t

NASA Ames Research Center

MS T27B Moffett Field, CA 94035

Marsha J. Berger*

Courant Institute

251 Mercer St.

New York, NY 10012

1 Introduction

This work considers numerical simulation of three-dimensional flows with time-

evolving boundaries. Such problems pose a variety of challenges for numerical schemes,

and have received a substantial amount of attention in the recent literature. Since

such simulations are unsteady, time-accurate solution of the governing equations is

required. In special cases, the body motion can be treated by a uniform rigid mo-

tion of the computational domain. For the more general situation of relative-body

motion, however, this simplification is unavailable and tile simulations require a mech-

anism for ensuring that the mesh evolves with the moving boundaries. This involves a

"remeshing" of the computational domain (either locali:,ed or global) at each physical

timestep, and places a premium on both the speed and robustness of the remeshing

algorithms. This work presents a method which includes unsteady flow simulation,

rigid domain motion, and relative body motion using a time-evolving Cartesian grid

system in three dimensions.
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While 3-D moving-boundary simulations have been performed on body-fitted

structured and unstructured grid systems for some timer1 4], the literature on Carte-

sian methods has been largely restricted to two dimensions and/or simplified configu-

rations. Early approaches to the 3-D Cartesian moving-body problem included both

the Volume of Fluid (VOF)[5] and level-set approaehe,'_[6]. NIore recently, there has

been interest in the immersed-boundary[7-9] and cut-cell Cartesian approaches[10-

13]. Non-body-fitted, Cartesian approaches like these are particularly interesting

since they can be made both extremely fast and robust[14]. Moreover, they are

comparatively insensitive to the complexity of the input geometry since the surface

description is decoupled from the volmne mesh, and can therefore handle complex

geometries with relative ease.

This work builds upon the inviscid, Cartesian cut-cell solver in Ref. [151. In this

method, the cells which are cut by the boundary geometry can be arbitrarily small,

making explicit update schemes overly restrictive for time-dependent problems. Ap-

proaches to overcome this restriction usually either extend the difference stencil of

the spatial terms[16], or use a cell-merging approach [10], so that cut-cells carl be

advanced with the explicit timestep of a full urtcut cell. Both approaches have been

successful for two-dimensional simulations with movinf; boundaries[10, 13, 161, how-

ever, the coupling of cell size and allowable timestep with explicit methods implies

that tile boundary motion will be restricted by the size of the finest boundary inter-

secting Cartesian cell during a single timestep.

In a Cartesian moving-boundary scheme, the most delicate operation is the re-

intersection of the body with Cartesian grid at each time step. Not only is this the

most computationally expensive part of Cartesian me'_h generation, but it requires

special procedures to ensure that the floating-point intersection calculations are al-

ways robust[14]. In a two dimensional mesh with O(N 2) ceils, the boundary geometry

only intersects O(N) cells. In three dimensions, however, the boundary is a surface

instead of a line and the number of intersection calculat!ons is squared with respect to

the 2-D case. Moreover, these intersection calculation,'_ are higher-dimensional, and

therefore each is more expensive and more difficult to compute robustly. Arguments

for both efficiency and robustness in three dimensions weigh heavily in favor of moving

the body as rarely as possible to minimize the re-cutting of Cartesian cells. These ar-

guments are amplified in parallel-computing environments, where mesh modifications

often imply rebalancing the load distributed to the var!ous processors by exchanging
ceils across subdomain boundaries.

Following this line of reasoning, the present work adopts a fully-implicit temporal

operator to decouple the timestep from the local mest, scale. It leverages the same

multigrid smoother used by the steady-state solver[15] by embedding it in a dual-

time framework. The implicit approach means that finer mesh simulations do not

automatically require more remeshings than coarse simulations. Simulations proceed

at a timestep dictated by the appropriate physics rather than stability constraints.

As noted earlier, special subclasses of arbitrary body motion can be treated by

rigid motion of tile entire domain. The current work implements a rigid domain



motionwithin theArbitrary Lagrangian-Eulerian(ALEJformulationof Hirt et al.[17].
In this Lagrangian framework, a single transformation matrix can be applied to all

the faces in a Cartesian mesh, and since these faces all have the same orientations,

the transformation carl be inexpensively precomputed, stored and applied.

Relative boundary motion is superimposed on top of the rigid domain motion

using an adaptive re-meshing strategy which does not rely on explicit cell merging.

Since the geometry moves relative to the volume cells, this aspect of the implemen-

tation is Eulerian. A space-time analysis is used to ensure conservation, and to

develop a hierarchy of approximations to the moving boundary. The basic analysis is

presented in detail in I-D, with the complexity which arises when extending to mul-

tiple dimensions also discussed. The final section presents initial numerical results in

one, two, and three dimensions using the implicit, relative-motion sclmme, including

comparison with analytic solutions and experimental d_ta.

2 Dual-time formulation

In order to leverage the infrastructure of the steady-state flow solver outlined in

Ref. [15], a dual-time formulation (cf. Refs. [i8, i9]) was developed for the time-

dependent scheme,

dQ
d--T+ R*(Q) = o

c_Q
R*(Q)=_+R(Q)

(1)

where 7- is referred to here as "pseudo-time", and is the iterative parameter, and t is

the physical time. Q is the vector of conserved variables, and R (Q) is an appropriate
1

numerical quadrature of the flux divergence, V fs f' ndS. As _ _ 0 the time-

dependent formulation is recovered. The multi-grid smoother described in [15] is

used to converge the inner pseudo-time integration. An explicit, multi-stage, pseudo-

time-integration scheme is utilized to converge the "irner loop" in Eqn. 1. This is

similar to the scheme outlined by Jameson[20], however, the semi-implicit approach

of Melson et a1.[21] is used here for the physical time-derivative term.

Various time-dependent schemes can be constructed for Eqn. 1 by appropriately

discretizing the time derivative. As noted in the Intrcduction, it's desirable to uti-

lize an unconditionally-stable, implicit scheme to allow a large timestep to be chosen

based upon physical considerations rather than a potentially smaller stability-limited

timestep. Beam and Warming[22] outline a family Df consistent time-dependent
schemes that utilize three time levels, Q_-I Q,_, Qn+l These are given by

fii* (Q) -- (1 + ()Q,_+I _ (1 + 2_)Q,_ + _Qn-1
2st

+ OR (q,,+l) + (1 - 0 + ¢)R (qn) _ OR (q,_-l)

(2)



I 0 I _ I _ I Method " I Order I

1 0 I 0 Backward Euler 1

1/2 0 0 Trapezoidal 2

1 t 1/2 0 2nd-order backward 2

3/4 0 -1/4 Adam's type 2

1/3 -1/2 -1/3 Lee's type 2

1/2 -1/2 -1/2 Two-step trapezoidal 2

5/9 -1/6 -2/9 A-contractive 2

Table 1: Partial list of A-stable, two- and three-level methods (Eqn. 2) from Beam and Warming[22].

Table 1 contains a partial list of the A-stable, three time level methods that can be

formulated using Eqn. 2.

3 ALE formulation

In many applications with moving geometry, the motion of the geometry can be

decomposed into a "uniform" rigid-bodjy ....,,,,°_,,,,,_;...... ,,1o,,;+_relative motion confined to a

subset of the domain. Examples include rotating airframes with dithering canards[23],

rotoreraft, or stage separation from space vehicles. It's desirable to simulate such a

motion using a rigid-body motion of the entire comput._Ltional domain, and treat the

relative motion within the moving domain separately. This again limits the amount

of computational work that is required to process the moving geometry.

An ALE formulation (eft Hirtet al. [17]) was utilized in order to account for the

rigid-body motion of the computational domain. This is accomplished by modifying

the flux through a boundary to account for the motic)n of the boundary. For the

inviscid flux vector used here, this becomes

where

pzt,_ }
f . n = pu,_u + pn

pu,_e + pu • n

(3)

is the velocity relative to the moving boundary, and un is the velocity of the moving

domain. Hence the convective part of the flux is modified to account for the motion

of the boundary, compared to the treatment for a fixed domain.

A modified form of van Leer's flux-vector splitting (FVS) [24J is used with the ALE

formulation. This modification generalizes the scheme by using the Mach number

relative to the moving boundary when determining the characteristic speeds of the

system. If the relative Mach number is not used the scheme will not be Galilean

invariant; simulations with a static domain will not provide the same numerical results

as those which use a moving domain to compute the same physical problem. The



subsonicflux for vanLeer'sFVScanbewritten asa combinationof convectiveand
acousticterms(for a static domain)as

t*- •n = pcu
pcH

{0}v4- M,_ (2 :F M,,) Pnn

:F (2 :FM,,)2
"7-7 " t o}0

pc

(4)

where M,,c = u. n and M_ = _¼ (1 + M,,) 2. The numerical flux across a boundary

which separates two domains (left and right) then becomes f(QL, QR) = f+(Qc) +

With an ALE formulation, the Mach number relative to the moving boundary

is M,_c = (u - u_) • n. If this relative Ivlach number is simply substituted into van

Leer's FVS when computing on a moving domain, the energy equation will not be

consistent, in the sense of f(Q, Q) = f(Q). This is due to combining the total energy

and pressure work terms into the total enthalpy H in the numerical energy flux in

Eqn. 4. Physically, the pressure work due to the domain motion (pua) is identically

zero, and hence this term does not appear in the energy flux in Eqn. 3.

A Inodified form of van Leer's FVS was developed for the ALE scheme. The mass

and momentmn flux are unmodified from the original form, only the energy flux is

changed. Examining the energy" flux in Eqn. 4, it's seen that the last term disappears

when QL = QR. Neglecting this last term in the energy flux, the total enthalpy is

split into the total energy and pressure work, and these terms are treated separately

in the same manner as the momentum equations. The modified scheme then becomes

{0}f±. n = M,_ pcu :L M_ (2 :F M. ) pn (5)

pce pu. n

where M, _, is now based upon the relative Mach number. The convective terms and

acoustic terms are treated consistently in all 3 equations of the system. This numerical

flux is similar to the WPS scheme developed by Agarwal and Halt[25]

The modified scheme for the energy flux maintains t :_e smoothness property of van

Leer's original FVS. It is continuously-differentiable through M,, = El, as can be seen

in Fig. 1, where the normalized energy flux (o@) is plotted against the Mach number.
Both FVS schemes smoothly approach the asymptotic limit of pure upwinding.

The geometry of the domain is expressed in the moving coordinate system, and

must be transformed to the inertial system where the equations of motion are spec-

ified. With a Cartesian scheme, the faces of each cmnputational cell have normals

pointing in one of the Cartesian directions. These normsls all transform to the inertial

system similarly, and are simply pre-computed and stcred prior to each timestep.
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Figure 1: Normalized energy flux for tile FVS schemes, Eqns. 4 and 5.

The ALE formulation was utilized to sinmlate a transonic NACA 0012 pitch-

ing airfoil (cf. AGARD Repor_ 702 [26]). The 2nd-order backward time-integration

scheme was used to compute the unsteady motion star_;ing from a converged steady-

state solution. The sinmlation uses 100 timesteps per complete cycle of the airfoil,

and an isotropic mesh with a finest resolution of 0.001 chord. As the airfoil oscillates,

the shock transitions between the upper and lower surfaces of the airfoil, and the

fluid state is path-dependent. This hysteresis is evident in the normal force history

plotted in Fig. 2. After an initial transient of approximately 1/2 cycle, the solution

is periodic. At a given angle of attack, the normal force is multi-valued depending

upon whether the airfoil is pitching up or down. The computed variation of normal

force is in good agreement with the experimental data.

4 Relative motion

As an introduction to computing moving boundaries with a non-body-fitted Carte-

sian scheme, Fig..9? contrasts three methods of moving geometry during a timestep:

overset meshes, deforming meshes, and the current Cartesian approach. Both the

overset and deforming mesh approaches use body-fitted volume meshes. Overset ap-

proaches (cf. [1, 27, 28]) are relatively easy to implement and efficient, as the volume

mesh processing is done a priori; only (lower-dimensional) boundary interpolations

are updated at each step. Overset methods cannot maintain conservation across

composite grid boundaries without complex re-meshing of the overlap region. It

also can be difficult, and labor-intensive to maintain a compatible spatial resolution

across composite grids, and to process the boundaries when components are close to-
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Figure 2: Variation of normal force coeflicient with angle of attack for oscillating NACA 0012.
(3/I_ = 0.755, a(t) = 0.016 + 2.51sin (27r62.5t)). The simulation uses 100 timesteps per complete
cycle of the airfoil, and an isotropic mesh with a finest resolution of 0.001 chord. Experimental data
from [26].

gether. With deforming meshes (of. [3.29, 30]), the volume mesh deforms in response

to the surface motion, and after large deformations e. volume re-meshing and (of-

ten non-conservative) interpolation to the new mesh is. performed. Deforming-mesh

approaches can be conservative over a timestep, making them attractive for small de-

formations, however for large timesteps (which lead to large boundary movements),

the quality of the cell stencil can severely degrade due to the deformations. In the

current Cartesian approach, the moving boundary "sweeps" through a fixed Eulerian

mesh over a timestep. The cells within the swept region of the domain change volume

and shape over the timestep, and cells can appear or disappear (or both) as well. The

space-time geometry associated with these swept cells is complicated, however it is

possible to formulate conservative schemes as the boundary' is impermeable, hence

the flux through the moving boundary is always known to some order of accuracy.

Formulating a non-body-fitted Cartesian scheme which maintains conservation for

large timesteps (large motions) of a moving boundary, while still retaining efficiency

and robustness is the challenge for the current (and fllture) research.

4.1 Governing Equations

The motion of a solid body through an inviscid fluid discretized by a fixed Carte-

sian mesh is governed by the same ALE set of conservation equations (a Lagrangian

body moves through an Eulerian mesh) as the rigid-domain motion of the previous
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section,

dt "(0 (t)

pu_
f. n = p_zT,u + pn

p_ne + pu • n

= (u- w).n

}
S = OV

(G)

Here w is the velocity of the moving boundary with respect to the Eulerian frame, and

is used to differentiate from the rigid domain velocity tin. For the current discussion

the rigid-body motion of the domain will be ignored, anJ only the relative motion will

be formulated. No changes to the current scheme are required when the rigid-domain

motion is superposed.

For a cell in a Cartesian mesh swept by a moving boundary, Eqn. 6 can be simpli-

fied as the boundaries of the cell are fixed, hence w • n = 0, except for the motion of

the solid surface through the volume, for which u. n = w. n holds (i.e. the convective

portion of the flux is zero through an impermeable surface). Eqn. 6 is preferred over

a simplified form however, as it emphasizes the deforming-cell nature of the problem.

Applying Liebniz' rule to the left side of Eqn. 6 givss

d QdV = --_ + Qw ndS (7)
dt (t) (t) (t)

and the right-hand-side flux through the boundary sur[ace can be decomposed as

-_s f'ndS=-_s [Q(u-w)+P].ndS (8)
(t] (t)

(0)where P = p6 is the acoustic portion of the flux. Balancing terms gives

pu

/v(t) _t dV + _(t) [Qu + P] . n:tS = O (9)

Equation 9 can be recast into a space-time divergence form by applying Gauss's

thereom to the spatial volume integral. Defining the 4-D space-time normal as _ =

{[, n}, where [ is the normal in the time direction, n is the unit spatial normal, and

Q = {Q, Qu + P}, the space-time conservation equation is

Q. : o 0o)

where f_ is the boundary of the space-time volume. Expanding Q for clarity gives

= pu t, puu + p6 n (11)

pe peu + pu
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Figure 3: One-dimensional space-time cell. The impermeable moving boundary (shown in red)
crosses the fixed left face of the cell at time t c. The impermeable boundary has a normal with
elements in both space and time.

Note that the velocity of the moving solid surface no longer explicitly appears in

Eqn. 10 as the motion of the boundaries is accounted for in the direction and "area"

of the space-time boundary. Fig. 3 shows a 1-D space-time cell volume for a Cartesian

cell as a moving-boundary crosses the left cell face. The impermeable portion of tile

space-time cell boundary (red boundary in Fig. 3 with slope l/w) has a normal with

elements in both space and time, and is analogous to the role of the boundary velocity

in Eqn. 6. In essence, the mixed Lagrangian/Eulerian Jbrmulation of Eqn. 6 has been

converted to an Eulerian formulation in space-time.

Equations 6 and l0 explicitly satisfy the so-called Geometric Conservation Law

(GCL) (cf. Thomas and Lombard[31]), and no supplementary information is required.

The GCL is usually presented as

dS dV t; w ndS (12)
dt (t) (t)

which states that the change in cell volume is equivalent to the area swept by the

moving boundary. The supplementary information the.t the cell must close, f ndS =

0, is also required. The space-time analog to the GCL is

_dfi 0 (13)

which states that the space-time cell must close.
Whether numerical schemes are built for Eqn. 6 or Eqn. 10 is largely a matter of

convenience, as both are mathematically equivalent. In the current work, Eqn. 6 is

discretized directly, since it maintains a similar formulation as the governing equations

for both static and rigid-domain motions. This leverages the existing flow solver

infrastructure for multigrid, dual-time, etc., for solving the relative motion equations.

9
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Figure 4: One-dimensional motions of an impermeable boundary for motion less than the uncut

hexahedron spacing (CFL_ < 1).

and spatial directions. The temporal (convective) contribution is identically zero, as

u. n = w. n for an impermeable boundary. This leaves only the pressure contribution

to the moving-boundary flux, which in the current 1-D example becomes

tn + l _in_r l

L /?d_ = fpwdtJtn
(16)

where Pw represents an approximation for the wall pressure to some order of accuracy.

In other words, pressure acts only in the spatial directions, and hence the space-time

area over which the surface pressure acts is the projection along the spatial axes of

the moving wall area. In the vector notation of the previous section

= (p. n)w (lr)

An example in multiple dimensions is shown in Fig. 5 where a boundary moves

through a group of hexahedra in 2-D. Examining the space-time cell k, the pres-

sure acts on the projection of the moving front along the -z and +y axes. The

space-time areas over which the pressure acts are thei_ the triangular projections in

Fig. 5b.

11
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Figure 5: 2-D cells swept by a moving boundary. The moving boundary is shaded in red, and

begins at time level n in hex j. The boundary both rotates and translates, moving in the +cc and

-!/directions over the timestep. At time level n + 1 hex j is completely interior to the boundary,

and cell k is now cut.
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For cells such as sketched in Fig. 4a, where the solid boundary does not cross a

cell vertex over the timestep, it is unnecessary to calculate any space-time geometry

or modify the numerical scheme in any way. Conservation is satisfied if the change in

cell volume is known, and the accuracy of the scheme for Eqn. 14 is determined by

the form of the flux quadrature through the space-time areas.

Fig. 4b again shows a boundary motion which is less than the uncut hexahe-

dron spacing, however in this example the boundary crosses a cell vertex during the

timestep. The celI labeled J disappears ahead of the moving front, while the new

cell j' emerges behind the front. Examining the situation ahead of the moving fl'ont

first, the cell j does not exist on the mesh at time level n + 1, hence nothing needs

to be computed in this cell. The cell k is the first cell at time level n + 1 ahead of

the front. This cell receives a contribution from the uncut face to the right, and two

contributions on the left: a flow contribution from t '_ to t c, the time of the vertex

crossing, and a solid wall contribution from tc to t '_+1. In general, the flux through a

space-time face is thus composed of a flow portion, 12f, and a boundary contribution

f_. The semi-discrete equations for cell k are written as

_n+l t c tn+l

tv<_ ;k - (pu_, )k + - - =
J t n

where the simplification for the solid wall contribution f_ from t c to t _+l, Eqn. 16,

has been made. The flux entering cell k from t '_ to t _ is identical to the flux out of

cell j. The semi-discrete conservation equations for cell j are

L

solvingforf fffd_I and substitutingfor f -L-- f_d_ I in Eqn. 18 gives

t n+l g tn+!P

(puV)_+' - (puV)_ -(puV)_ + i fRdf_ - I pwdt = 0 (20)
dr. J t_

as the semi-discreteequationsforcellk inFig.4b. Comparing with Eqn. 14,the only

required modification is a conservation correction from cell j. This "cell-merging"
correction will be discussed further in the next section.

The conversion of the flux in celt k from t '_ to t c _o a pressure contribution in

Eqn. 20 is not general, and in multiple-dimensions the ,;patial flux for a cell ahead of

the front will contain both wall and flow contributions. This is seen in Fig. 5b, where

the celt j closes as the boundary moves, however cell k ahead of the moving boundary

has both wall and flow components of the space-time flux through its -x and +y

space-time faces. In order for the flow component of the, flux to telescope completely

to a pressure component all of the spatial faces of a cell must become closed.

Cell j' in Fig. 4b emerges behind the body at t _'. Again, the temporal (convective)

contribution due to the moving boundary is zero for an impermeable boundary, and

13



tile only contribution dueto pressureis a projectionof the wall alongtile spatial
axes.The left face of cell j' receives a flux contribution beginning at t c' so that the

semi-discrete governing equations for cell j' are

tn+l tn+l

(puv )j, + p_dt - =
,] to'

(21)

Unlike the cell k ahead of the front, for cells behind the moving boundary in 1-D it is

necessary to determine the time t _' in some manner. Various levels of approximation

for determining this vertex crossing time will be outlined in See. 4.2.3, after the current

discussion is extended to arbitrarily-large boundary motions in the next section.

4.2.2 Arbitrary CFL

The implicit framework of tile current method requires that tile numerical scheme

allow large geometry motions during a timestep. Figure 6 shows an impermeable

boundary moving through several cells of a Cartesian mesh over a single timestep,

again in 1-D. Hexahedra such as j, k, and l in Fig. 6 are referred to as "time-split"

hexahedra, in a similar manner as spatially-split hexahedra (cf. Aftosmis et al.[14]).

The cells behind the moving front are processed as described in Eqn. 21 without

modification. Examining the cells ahead of the moving front which no longer appear

at time level n + 1, the semi-discrete equation for cell m can be written as

tn+l tn+l

- (p v)m - (p vF + - , =
ahead

The term _hCad (PuV) '_ represents a conservation correction for cell m which is an

agglomeration of the conserved quantity in all the celts ahead of the moving front.

In l-D, determining this conservation correction term is unambiguous. An example

of the complexity in multi-dimensions is shown in Fig. 5b, where the correction flom

cell j must be apportioned among its three neighbors (those sharing the -y face,

+x face, and the diagonal neighbor k). This apportionment is similar to the flux

redistribution used by Pember et a1.[32].

The "flux telescoping" used here is analogous to the _ell-merging technique used in

explicit, 2-D simulations by Bayyuk et al.[10, 11]. In cell merging the cells surrounding

the moving body at both time levels are physically merged into a single cell, and then

integrated forward in time. After the timestep a reecnstruction is performed back

to the unmerged mesh. The complex implementation to physically merge the cells

is avoided in the current method. Ahead of the front, the cell merging and flux

telescoping techniques are mathematically equivalent, however behind the front they

are not necessarily the same. For example, since the current method maintains the

discretization through the timestep, a reconstruction step is not required behind the

front. This reconstruction can be problematic for large boundary motions and in
multi-dimensional simulations.

14
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4.2.3 Levels of Space-tirneGeometry Approximation

As describedin the previoussection,in general,somedetailsof the space-time
geometrymustbedeterminedin orderto evaluatethe spatial flux terms. As a first
step,thecurrentarticlefocuseson two-time-levelschemeswith theflowandgeometry
statessynchronous.Theserequireonlya singlecompu:ationof the cut-cell intersec-
tion per timestep(time leveln simply being saved frora n + 1 of the previous step).

A similar approach staggers the geometry and fluid states in time[8], and also only

requires a single geometry intersection per step. As de_,;cribed previously, the change

in the conserved quantity can be discretized directly since tile cells volumes are known

at time levels n and n + 1 as a result of the volume mesh generation. This section

describes levels of approximation in determining the required space-time geometry,

beginning with the simple and becoming more complex. Determining the space-time

geometry affects the accuracy of the numerical scheme, however conservation is main-

tained discretely regardless of how the space-time geometry is approximated.

With the Cartesian approach, it is not explicitly required to determine the details

of the moving boundary motion, and non-planar wall motions can potentially be

evaluated. Fig. 7 shows an isolated view of the 2-D cell k from Fig. 5. If the flow

contributions to the space-time area (_f) are known, then the wall contribution can

be determined by using the space-time GCL, Eqn. 13. Since Eqn. 13 is a vector

equation it can be applied to each Cartesian direction independently. Thus in order

to determine the wall contribution it is simply required _o enforce that the space-time

cell volume closes. In this manner it is not necessary l.o explicitly linearize the wall

motion in order to determine the wall flux contribution, though with most methods

an implicit linearization does occur as will be described.

The space-time GCL can also be used to simplify the pressure work due to the

moving boundary, so that it is unnecessary to evaluate any space-time geometry. The

pressure work term is given by

pu. nd_ (23)

where here the integral is taken over the moving boun&_ry within the space-time cell.

If the wall pressure is approximated with a constant value p_, and the substitution

u. n = w • n for an impermeable boundary is made, then Eqn. 23 becomes

f w. nd_'_ w (24)

The integral f_o w. nd_ is the area swept by the moving boundary over the timestep,

which is equivalent to the change in volume within the space-time cell (cf. Eqn. 7).

Hence the pressure work term can be evaluated using the known cell volumes at n
and n + 1 as

u. ndg_w _ p,.AV (25)

16



k

Figure 7: Isolated view of cell k from the two-dimensional motion in Fig. 5.
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Sincethecontributionto massconservationdueto animpermeableboundaryis iden-
tically zero,this leavesonlythepressurecontributionto themomentumequationsto
beevaluatedin thecurrentscheme.

The lowest-fidelityapproachfor the space-timegeometryis to simplyignorethe
time-dependentnature of the problem,and solvethe governingequationswith a
steady-statesolverat eachtime level. The steady-statesolvercan easilybe aug-
mentedwith amoving-wallboundarycondition.Whilethissequential-staticapproach
appearscrude,therearemanyapplicationshavingtimescaleswherethisapproachcan
be effective, and examples can be found in the literature. The advantage is that no

specialized time-dependent or moving-body algorithms are required in order to per-

form the sinmlations, however the applicability and accuracy is limited (and unknown

in general).

The sequential-static simulation approach can be improved by including a "his-

tory" of the fluid evolution, i.e. including the time derivative of the fluid state °o-_t.

The simplest way to accomplish this is to use a staircase approximation to the space-

time geometry, analogous to using a stairc_tse geometry in space. The geometry is

considered fixed over a timestep It_, t_+l], for example by holding the geometry in its
state at t '_, or t _+_/2, etc. In this manner the cell volume is held constant, so that

a history of the motion is not provided, however the correct moving-wall boundary

condition is still applied.

In the current scheme, the intersection of the geometry with a fixed Cartesian

mesh is available at time levels n and n + 1 so that a history of the motion can

be provided through the change in cell volume over a timestep. The integral of the

flux through a face which is cut by the geometry during the timestep must still be

evaluated however. As discussed in Sec. 4.2.1, in general the spatial flux through a

space-time face is composed of both flow and wall contributions

tn_ l e,tr,.+l t _+1

where f = Qu +P and the space-time normal fi has elements in both space and time.

The subscripts again refer to either a Cartesian flow lace or a general impermeable

boundary direction. Also note that in general the integrals are composed of multiple

components. For example, the flow contribution on the -z face in Fig. 7 can be

broken into two integrals; one up to the vertex crossing and one after. The space-

time flux terms in Eqn. 26 can be evaluated with a (l_t-order-in-time) backward-Euler

quadrature, i.e.

_, (27)

In this manner the state of the flow at time t _+_ is held over the entire timestep

[t_,t=+l]. A 2"a-order spatial approximation for [-,,+1 is used. The impermeable
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moving-wallboundaryconditionis implementedin the wall flux term, i.e t'_..fi_,=
P_ .n,. (Eqn.17). This providesa straightforwardmeansto approximatethemov-
ing geometryand providea historyof the wall motion. Exampleresultsusingthis
backward-Eulerapproximationwill be presentedin 9ec.5. Comparisonsof the
sequential-staticandbackward-Eulerapproximationfor prescribedand6-DOFmo-
tionsarepresentedin [23]and/as] respectively.

An improvementcanbemadeto the backward-Eulerapproximation,essentially
at no cost, by improvingthe approximationto the space-timegeometry.This ap-
proximategeometryapproachis motivatedbythe observationthat it isn't necessary
to determinethecompletedetailsof thespace-timegeometryin orderto implementa
numericalscheme,it isonly requiredto determinethespace-timeareafor thespatial
flux terms. If this areacanbe approximatedin somemanner(and anappropriate
quadraturedeterminedfortheflux), animprovementin accuracyispossible.Thisap-
proachissimilarin spirit to usinganagglomeratedwaLwithin thecut-cellgeometry,
ratherthan separatelycomputinga contributiondueto eachpolygonalcontribution
fl'omthesurfacetriangulation(cf.Aftosmiset ai. [14]).A simpleexampleis to approx-

~' (S__ + S}_+') At. Theimate the flow portion of the space-time geometry using f_I _
wall portion of the space-time geometry is then determ!ned by forcing the space-time

cell to close, as discussed above. Combining this app, oximation with a trapezoidal

quadrature gives

(28)

_ represents the approximation to the wall space-time area. More complex approx-

imations for the space-time geometry are also possible. Evaluating the approximate

space-time geometry approach for 3-D simulations is a focus of current research.

The highest-fidelity approach is to determine the actual space-time geometry. In

3-D, each spatial face is a 2-D area which evolves to a 3-D volume in space-time. If the

motion of the moving boundary is planar in space-time, i.e. can be linearized, then

the same techniques which are used to determine the cut-cell geometry for spatial

meshes can be used to determine the space-time geometry of each spatial face. This

requires that roughly six 3-D boundary/cell intersections must be computed for each

Cartesian swept cell. While this approach is conceptually feasible, more experience

is required to evaluate its utility.

5 Numerical Results

The previous sections described moving-boundaries within a Cartesian scheme,

along with outlining implicit algorithms for solving such problems. The current sec-

tion presents numerical results in one, two, and three dimensions to demonstrate the

implicit approach. All results were obtained using the backward-Euler scheme dis-
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cussed in tile previous section. Before presenting the numerical results however, the

full three-dimensional implementation is briefly discussed.

Currently,a fastglobalre-meshingisperformed at each timestepwith the same

volume mesh generationpackage as used forstaticsinmlations.Work on incorporat-

ingsolutionand moving-geometry adaptationcapability,similartothe static,steady-

state method outlined in Aftosmis and Berger[34], is in progress. Note that if the

motion is prescribed all the meshes can be processed a priori, and in parallel. In-

tegrating the deforming-cell governing equations, Eqn. 6, for a representative cell j

using the backward-Euler scheme gives

ahead

The summation on the right side includes the wall and flow contributions within

cut ceils. This can be numerically integrated using the dual-time scheme outlined in
ll

Sec. 2. The terms (QV)5 and _h_aa (QV) '_ become fixed source terms in the dual-
time scheme. (QV) _ however is only available on the mesh at time level n, while it

is required on the mesh at time level n + 1 in order tc integrate Eqn. 29. (QV) n is

conservatively transferred from the mesh at time level n to the new mesh at n + 1
external to the flow solver. The transfer of the solution between two volumes meshes

takes advantage of the space-filling-curve ordering of the cells in the Cartesian meshes

(cf. Ref. [15]). This allows the transfer to be performed very efficiently, requiring only

two sweeps over the mesh cell list. A full discussion of this transfer algorithm is

beyond the scope of the current work.

5.1 1-D Piston

A 1-D piston instantaneously moving at Mp = 2.0 inl;o an initially quiescent fluid is

simulated to demonstrate the conservation of the scheme. While the physical problem

is one-dimensional, a 3-D mesh and solver are used, witL suitable boundary conditions

to ensure no lateral flow develops. The piston is originally centered at x = 0, and has

width 4A:r, where Az is the uncut hexahedron spacing. The piston moves in the +z

direction, and a shock forms ahead of the piston, with an expansion region to the rear

(ef. Liepmann and Roshko See. 3.2135]). If conservation is not maintained, a shock

will not form ahead of the piston, or will have the wrong speed, as mass, momentum,

and energy continually "leak" through the piston face. Numerical simulations moving

the piston relative to a fixed domain are compared with the exact analytic solution.

Figure 8 plots the pressure on the compression-side face of the piston as a function

of time for two CFL numbers based upon the piston velocity, CFL_ = _ = 1.0 andAz

10.0. After an initial transient, both numerical simulations reach the same pressure

on the piston face, which is in agreement with the analytic solution. The pressure and

density variation along the axis are plotted in Fig. 9 after the piston has traveled 80Azc

and 320Az for the CFL_ = 1.0 and 10.0 simulations respectively. Both simulations

predict the correct shock location ahead of the traveling piston, and the agreement in
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Figure 8: Pressure on the compression-side face of a piston moving at Mp = 2.0 into an initially

quiescent fluid.
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Figure 9: Density and pressure variation along the axis for a piston moving at 214p = 2.0 into an

initially quiescent fluid• The mesh has a uniform spacing of Ax = 0.25.

the expansion region behind the shock is likewise very' good. As expected, the shock

is smeared over several ceils using the backward-Euler time integration scheme, and

the higher CFL results show greater dissipation near the shock than the CFL = 1.0
results.

5.2 2-D Oscillating Airfoil

The oscillating NACA 0012 airfoil presented in Sec. 3 is used to examine the

behavior of the relative-motion scheme in 2-D. The experimental case was sinmlated

using both the 2nd-order backward scheme with the moving-domain ALE scheme

(cf. Sec. 3), and the 1st-order (in time) relative-motion scheme. Both schemes utilize

the same spatially 2nd-order numerical flux formulation, and 100 timesteps per cycle

were used in both simulations. The computed normal force variations with angle

of attack are shown in Fig. 10. Both simulations capture the hysteresis caused by

the unsteady shock formation, and are in good agreement with each other and the
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Figure 10: Variation of normal force coefficient with angle of attack for oscillating NACA 0012.

Compare with pressure contours in Fig. 11. (M_ = 0.755, c_(t) = 0.016 + 2.51sin (2rr62.5t)). The

simulation uses 100 timesteps per complete cycle of the airfoil, e.nd an isotropic mesh with a finest

resolution of 0.001 chord. Experimental data from [2@

experimental data. The convergence and stability properties of the ALE and relative-

motion formulations are similar for this problem. Using two coarsening levels of

multigrid, each physical timestep converges roughly '2 orders of magnitude in the

Ll-norm of density in 25 W-cycles using the dual-time formulation.

Snapshots of the 2-D pressure contours computed wSth the relative motion scheme

are shown in Fig. 11 for the NACA 0012 oscillating airfoil. In general, the contours are

smooth, with sharp definition of the shock location, i.e. no numerical artifacts from

the relative motion scheme are visible. The hysteresis is evident comparing Fig. lla

and Fig. 11c, where the airfoil passes through zero angle of attack on the upstroke

and downstroke respectively. The sonic "bump" whica forms behind the upstream

shock as it moves fi'om the lower to upper surface is seen in frame (b). The maximum

shock strength is shown in Fig. 11d, and the lag between mt_ximum pitch angle and

the angle of attack which produces the maximum shoc_ strength is clear.

5.3 3-D Rolling Airframe

In order to determine the conservation correction term Y'_h_d (QV) '_ in multiple

dimensions, it is necessary to simulate in some manner the physical convection process

which is no longer discretized with a large timestep. Determining the conservation

correction in 3-D, and the manner in which to distribute it, is an area of ongoing

research. The 3-D results presented here do not include a conservation correction.

The complete three-dimensional time-dependent flow solver, using both a rigid-

domain motion and localized relative motion, is demonstrated by simulating a roiling-

airframe with dithering canards. The complete details of these numerical simulations
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Figure 11: Snapshots of pressure during oscillation of NACA 0012 airfoil. Arrows m caption

indicate whether airfoil is pitching nose up, or nose down. Compare with normal force variation in

Fig. 10. (Moo = 0.755, a(t) = 0.016 + 2.,51 sin (2_r62.5t)).
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Figure12:Rotatingmissilewithditheringcanards.Theentirecomputationaldomainrotatesat
thebodyrollrateusingtheALEformulation,whilethecanar&_rotaterelativeto thebodyusing
therelative-motionscheme.

are contained in [23], and only a brief overview will be presented here. The entire

computational domain rotates with the body roll rate using the ALE formulation,

while the canards concurrently rotate relative to the body using the relative-motion

scheme. Again, only results for the backward-Euler relative motion scheme are pre-

sented. The missile body of Fig. 12 rotates at a constant prescribed rate of 8.75

Hz. As the body rolls, the two canards change positions synchronously to affect con-

trolled movements, such as yaw or pitch. The computed force and moment variations

with roll angle for one complete roll cycle are presented in Fig. 13, along with the

canard deflection angles. The simulations use a mesh containing 3.4M cells, and a

timestep which rolls the body 1° during a step (360 steps/cycle). The computed

results are compared to high-resolution (40M cells, 10.000 steps/cycle) overset, vis-

cous simulations of Nygaard and Meakin[36]. The current results compare well with

the viscous results in terms of both roll-averaged values, and the roll-dependent vari-

ations. As expected, the viscous results predict a consistent axial force increment

compared with the current inviscid results. Snapshots of the velocity magnitude at

5 axial cutting-planes along the body as the missile rolls are presented in Fig. 14.

The canards change position from their maximum to minimum deflection through

the three snapshots. The change in shock pattern on the canards as they pitch down,

and the change in sense of rotation of the canard tip vortices are both visible. The

twist in the canard tip vortices as the body rotates is also evident, though difficult to

discern at this low spin rate.

Roll-averaged loads for the rolling airfl'ame with dithering canards were measured

experimentally[37]. Numerical simulations are compared to the experimental data in

Table 2 for a body roll rate of 18Hz using the experimentally-measured canard dither

schedule (cf. [23] for more details). The computed forces and moments are all within

the 95% confidence level for the experimental data.
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Figure la: Force and moment comparison for rotating missile _ith dithering canards. The canard
pitch angle is shown as a solid black line with scale at right. Viscous simulations by Nygaard and
Meakin[36]. (/_1o_ = 1.6, a = 3.0 °, _ = 8.75Hz).

CN Cy G Cm C,, ]
Experiment 0.45 - 0.61 0.15 - 0.20 -0.036---0.07.9 -1.5 --0.40 0.93 1.5

Computed 0.55 I 0.20 -0.034 -0.48 I 1.46

2'able 2: Roll-averaged forces and moments for experimentally-measured dither schedule (M_c =

1.6, c_ = 3.0°, _ = 18Hz). Experimental range corresponds to a 95% confidence level [ar].

6 Summary

A method for simulating moving impermeable boundaries within a fixed Cartesian

mesh has been developed and demonstrated. This scheme leverages the automated

volume mesh generation process which has previously been demonstrated for static

geometries. A major goal in this work is to limit the amount of geometry processing

which is required during a complete simulation, in order to obtain an efficient and

robust scheme. This is especially relevant for three-dimensional applications. An im-

plicit dual-time method is used for the time advance, which allows a (large) timestep

to be chosen based upon physical considerations and not stability restrictions. This

limits the number of times the geometry must be intersected with the Cartesian

volume mesh over a complete simulation. A general :motion is decomposed into a

rigid-body motion of the entire computational domain, with a relative-body motion

superimposed. Since the rigid-domain motion can be 1:reared using an ALE formu-

lation, this confines the geometry processing only to the regions of relative motion

within the domain.

The details of the relative-motion scheme are presented from a space-time analysis.

This analysis presents the key ideas in l-D, and features of relative motion in a

Cartesian scheme are highlighted. A hierarchy of approximations to the boundary

motion during a timestep are presented, along with preliminary results in one, two,

and three dimensions. As a first step, only schemes which evaluate the geometry at
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two time-levels are considered for the relative motion.
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